Maximum Correntropy Unscented Kalman Filter for Spacecraft Relative State Estimation

نویسندگان

  • Xi Liu
  • Hua Qu
  • Ji-hong Zhao
  • Pengcheng Yue
  • Meng Wang
چکیده

A new algorithm called maximum correntropy unscented Kalman filter (MCUKF) is proposed and applied to relative state estimation in space communication networks. As is well known, the unscented Kalman filter (UKF) provides an efficient tool to solve the non-linear state estimate problem. However, the UKF usually plays well in Gaussian noises. Its performance may deteriorate substantially in the presence of non-Gaussian noises, especially when the measurements are disturbed by some heavy-tailed impulsive noises. By making use of the maximum correntropy criterion (MCC), the proposed algorithm can enhance the robustness of UKF against impulsive noises. In the MCUKF, the unscented transformation (UT) is applied to obtain a predicted state estimation and covariance matrix, and a nonlinear regression method with the MCC cost is then used to reformulate the measurement information. Finally, the UT is adopted to the measurement equation to obtain the filter state and covariance matrix. Illustrative examples demonstrate the superior performance of the new algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rotated Unscented Kalman Filter for Two State Nonlinear Systems

In the several past years, Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) havebecame basic algorithm for state-variables and parameters estimation of discrete nonlinear systems.The UKF has consistently outperformed for estimation. Sometimes least estimation error doesn't yieldwith UKF for the most nonlinear systems. In this paper, we use a new approach for a two variablestate no...

متن کامل

Relative Pose Estimation of a Spin-Stabilized Spacecraft

This paper presents filtering solutions for estimating the relative trajectory of a spin stabilized satellite. The SPHERES satellites have been selected as the hardware testbed for implementing a Multiplicative Extended Kalman Filter and novel Multiplicative Unscented Kalman Filter. Relative state measurements are provided by imaging fiducial markers on the target. The results from this analysi...

متن کامل

Vision-Based Relative State Estimation Using the Unscented Kalman Filter

A new approach for spacecraft absolute attitude estimation based on the unscented Kalman filter (UKF) is extended to relative attitude estimation and navigation. This approach for nonlinear systems has faster convergence than the approach based on the standard extended Kalman filter (EKF) even with inaccurate initial conditions in attitude estimation and navigation problems. The filter formulat...

متن کامل

Estimation of LOS Rates for Target Tracking Problems using EKF and UKF Algorithms- a Comparative Study

One of the most important problem in target tracking is Line Of Sight (LOS) rate estimation for using from PN (proportional navigation) guidance law. This paper deals on estimation of position and LOS rates of target with respect to the pursuer from available noisy RF seeker and tracker measurements. Due to many important for exact estimation on tracking problems must target position and Line O...

متن کامل

Sparse Gauss–Hermite Quadrature Filter with Application to Spacecraft Attitude Estimation

A novel sparse Gauss–Hermite quadrature filter is proposed using a sparse-grid method for multidimensional numerical integration in the Bayesian estimation framework. The conventional Gauss–Hermite quadrature filter is computationally expensive for multidimensional problems, because the number of Gauss–Hermite quadrature points increases exponentially with the dimension. The number of sparse-gr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2016